Solutions to FollandLast updated: December 10, 2025

CONTENTS

1.	Measures	2
2.	Integration	11
3.	Signed Measures and Differentiation	12

Folland 1.1.

Folland 1.2.

Folland 1.3.

(a) Let $\mathcal{M} \subset \mathcal{P}(X)$ be a σ -algebra. If $E \in \mathcal{M}$ is non-empty it is easy to verify that $\mathcal{M}(E) = \{A \cap E : A \in \mathcal{M}\}$ is a σ -algebra. Furthermore, since \mathcal{M} is infinite, $\mathcal{M} \neq \{\emptyset, X\}$ so there is some $E_1 \in \mathcal{M}$ such that neither E_1 nor E_1^c is empty. Furthermore, at least one of $\mathcal{M}(E_1)$ or $\mathcal{M}(E_1^c)$ must be infinite since the map

$$\varphi: \mathcal{M} \to \mathcal{M}(E_1) \times \mathcal{M}(E_1^c)$$
 which sends $\varphi: A \mapsto (A \cap E_1, A \cap E_1^c)$

is injective (in particular $|\mathcal{M}| \leq |\mathcal{M}(E_1) \times \mathcal{M}(E_1^c)| = |\mathcal{M}(E_1)| \cdot |\mathcal{M}(E_1^c)|$). Suppose without loss of generality that it is $\mathcal{M}(E_1^c)$ which is infinite. Then inductively choose E_i from $\mathcal{M}(E_{i-1}^c)$ so that $\mathcal{M}(E_i^c)$ is infinite. We have that $E_i \cap E_{i-1} = \emptyset$ since $E_i \subset E_{i-1}^c$, and $\mathcal{M}(E_i^c) \subset \mathcal{M}$. Thus E_1, E_2, \ldots constructed in this way is a sequence of disjoint, non-empty sets in \mathcal{M} .

(b) The map $\varphi: 2^{\mathbb{N}} \to \mathcal{M}$ which sends $\varphi: \mathcal{I} \mapsto \bigcup_{i \in \mathcal{I}} E_i$ is injective. Indeed

$$\varphi(\mathcal{I}) = \varphi(\mathcal{J}) \implies \bigcup_{i \in \mathcal{I}} E_i = \bigcup_{i \in \mathcal{J}} E_i \implies \mathcal{I} = \mathcal{J}$$

since the E_i are disjoint. Thus $|\mathcal{M}| > |2^{\mathbb{N}}| = |\mathbb{R}|$.

Folland 1.4. If \mathcal{A} is a σ -algebra there is nothing to prove. Suppose \mathcal{A} is an algebra that is closed under countable increasing unions. Let $\{A_n\}_{n\in\mathbb{N}}$ be in \mathcal{A} and define $B_n=\bigcup_{i=1}^n A_i$ so that $B_1\subset B_2\subset\cdots$. Then $B_n\in\mathcal{A}$ since \mathcal{A} is an algebra (closed under finite union). Furthermore using closure under countable increasing unions:

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \in \mathcal{A}.$$

Folland 1.5. Let \mathcal{E} be a collection of sets and denote $\sigma \mathcal{E}$ the σ -algebra generated by \mathcal{E} , we show that $\mathcal{M} = \sigma \mathcal{E}$ where \mathcal{M} is defined as

$$\mathcal{M} = \bigcup_{\substack{\mathcal{F} \subset \mathcal{E} \\ \mathcal{F} \text{ countable}}} \sigma \mathcal{F}.$$

First \mathcal{M} is a σ -algebra. Indeed if $A \in \mathcal{M}$, then $A \in \sigma \mathcal{F}$ for some countable $\mathcal{F} \subset \mathcal{E}$. Thus $A^c \in \sigma \mathcal{F}$ and so $A^c \in \mathcal{M}$. Now let $\{A_n\}_{n \in \mathbb{N}}$ be in \mathcal{M} . Then each $A_n \in \sigma \mathcal{F}_n$ for some countable $\mathcal{F}_n \subset \mathcal{E}$. Define $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$. Then for each $n \in \mathbb{N}$ we have $\mathcal{F}_n \subset \mathcal{F}$, and thus $\sigma \mathcal{F}_n \subset \sigma \mathcal{F}$. In particular $A_n \in \sigma \mathcal{F}$ for each $n \in \mathbb{N}$ and so $\bigcup_{n \in \mathbb{N}} A_n \in \sigma \mathcal{F}$. Furthermore, \mathcal{F} is a countable union of countable sets and is hence countable, in particular $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$.

Now \mathcal{M} contains \mathcal{E} . Indeed if $E \in \mathcal{E}$, then $E \in \sigma\{E\} \subset \mathcal{M}$. By minimality it follows that $\sigma\mathcal{E} \subset \mathcal{M}$. On the other hand, if $E \in \mathcal{M}$ then there exists $\mathcal{F} \subset \mathcal{E}$ such that $E \in \sigma\mathcal{F}$. But $\sigma\mathcal{F} \subset \sigma\mathcal{E}$, so $E \in \sigma\mathcal{E}$. Thus $\mathcal{M} \subset \sigma\mathcal{E}$ and altogether we have $\mathcal{M} = \sigma\mathcal{E}$.

Folland 1.6. As in Theorem 1.9, let (X, \mathcal{M}, μ) be a measure space, $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and

$$\overline{\mathcal{M}} = \{ E \cup Z : E \in \mathcal{M} \text{ and } Z \subset N \text{ for some } N \in \mathcal{N} \}.$$

It has been shown that $\overline{\mathcal{M}}$ is a σ -algebra. We show that the extension $\overline{\mu}(E \cup Z) = \mu(E)$ is a complete measure on $\overline{\mathcal{M}}$. First that $\overline{\mu}$ is a measure. First of all $\overline{\mu}(\emptyset) = \mu(\emptyset) = 0$. Now let $\{A_n\}_{n \in \mathbb{N}}$ be disjoint in $\overline{\mathcal{M}}$. Then $A_n = E_n \cup Z_n$ for some $E_n \in \mathcal{M}$ and $Z_n \subset N_n$ where $N_n \in \mathcal{N}$. Then (noting $\bigcup_{n \in \mathbb{N}} N_n$ is a null set)

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} E_n \cup \bigcup_{\substack{n\in\mathbb{N} \\ \subset \bigcup_{n\in\mathbb{N}} N_n}} Z_n ,$$

and since the E_n must be disjoint (otherwise the A_n would not be disjoint)

$$\overline{\mu}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}}E_n\right) = \sum_{n\in\mathbb{N}}\mu(E_n) = \sum_{n\in\mathbb{N}}\overline{\mu}(A_n).$$

Now we show $\overline{\mu}$ is complete. Let $A=E\cup Z$ (where $Z\subset N$ and $N\in \mathcal{N}$) be a null set in $\overline{\mathcal{M}}$, then $0=\overline{\mu}(A)=\mu(E)$. In particular E is a null set in \mathcal{M} . Furthermore, $E\cup N$ is a null set containing A. Now take an $S\subset A$, since $\emptyset\in \mathcal{M}$ and $S\subset E\cup N\in \mathcal{N}$ we can write $S=\emptyset\cup S$ and so $\overline{\mu}(S)=\mu(\emptyset)=0$.

Folland 1.7. Define $\mu = \sum_{j=1}^n a_j \mu_j$. Then $\mu(\emptyset) = \sum_{j=1}^n a_j \mu_j(\emptyset) = \sum_{j=1}^n a_j 0 = \sum_{j=1}^n 0 = 0$. Furthermore, for disjoint $\{A_n\}_{n\in\mathbb{N}}$ in \mathcal{M} we can use Fubini to write

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{j=1}^{n} a_j \mu_j\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{j=1}^{n} a_j \sum_{i=1}^{\infty} \mu_j(A_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{n} \mu_j(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

Folland 1.8. Recall the definitions of \limsup and \liminf for a sequence of sets $\{E_n\}_{n\in\mathbb{N}}$:

$$\limsup_n E_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} E_k \quad \text{and} \quad \liminf_n E_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} E_k.$$

Define the sets

$$A_n = \bigcup_{k > n} E_k$$
 and $B_n = \bigcap_{k > n} E_k$.

First of all $B_n \subset E_k$ for all $k \ge n$, thus $\mu(B_n) \le \mu(E_k)$ for all $k \ge n$, and taking the infimum yields

$$\mu(B_n) \le \inf_{k \ge n} \mu(E_k).$$

Furthermore notice that $B_1 \subset B_2 \subset \cdots$, and so by continuity from below:

$$\mu\left(\liminf_{n} E_{n}\right) = \mu\left(\bigcup_{n=1}^{\infty} B_{n}\right) = \lim_{n \to \infty} \mu(B_{n}) \le \lim_{n \to \infty} \inf_{k \ge n} \mu(E_{k}) = \liminf_{n \to \infty} \mu(E_{n}).$$

On the other hand $A_n \supset E_k$ for all $k \ge n$, thus $\mu(A_n) \ge \mu(E_k)$ for all $k \ge n$, and taking the supremum yields

$$\mu(A_n) \ge \sup_{k > n} \mu(E_k).$$

Now since $A_1 \supset A_2 \supset \cdots$ and by assumption $\mu(A_1) < \infty$ we use continuity from above to write:

$$\mu\left(\limsup_{n} E_{n}\right) = \mu\left(\bigcap_{n=1}^{\infty} A_{n}\right) = \lim_{n \to \infty} \mu(A_{n}) \ge \lim_{n \to \infty} \sup_{k \ge n} \mu(E_{k}) = \limsup_{n \to \infty} \mu(E_{n}).$$

Folland 1.9. We can write the disjoint unions

$$E = (E \cap F) \cup (E \cap F^c) \qquad F = (F \cap E) \cup (F \cap E^c) \qquad E \cup F = (E \cap F^c) \cup (F \cap E^c) \cup (E \cap F).$$

Hence

$$\mu(E) = \mu(E \cap F) + \mu(E \cap F^c) \qquad \mu(F) = \mu(F \cap E) + \mu(F \cap E^c) \qquad \mu(E \cup F) = \mu(E \cap F^c) + \mu(F \cap E^c) + \mu(E \cap F).$$

Finally we can write:

$$\mu(E) + \mu(F) = \mu(E \cap F^c) + \mu(F \cap E^c) + \mu(E \cap F) + \mu(E \cap F) = \mu(E \cup F) + \mu(E \cap F).$$

Folland 1.10. First of all $\mu_E(\emptyset) = \mu(\emptyset \cap E) = \mu(\emptyset) = 0$. Now let $\{A_n\}_{n \in \mathbb{N}}$ be disjoint sets in \mathcal{M} . Then

$$\mu_E\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(E \cap \bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (A_n \cap E)\right) = \sum_{n=1}^{\infty} \mu(A_n \cap E) = \sum_{n=1}^{\infty} \mu_E(A_n).$$

Note that $(A_n \cap E) \cap (A_m \cap E) = (A_n \cap A_m) \cap E = \emptyset \cap E = \emptyset$ for $m \ge n$.

Folland 1.11. If μ is a measure then there is nothing to prove. So suppose μ is a finitely additive measure and is continuous from below. Let $\{A_n\}_{n\in\mathbb{N}}$ be disjoint sets in \mathcal{M} . Define $B_n=\bigcup_{i=1}^n$ so that $B_1\subset B_2\subset\cdots$. Then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

On the other hand suppose μ is finitely additive and continuous from above, it suffices to show that μ is continuous from below. Let $E_1 \subset E_2 \subset \cdots$, and define $F_n = X \setminus E_n$ so that $\mu(F_n) = \mu(X) - \mu(E_n)$. Then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (X \setminus F_n)\right) = \mu(X) - \mu\left(\bigcap_{n=1}^{\infty} F_n\right) = \mu(X) - \lim_{n \to \infty} \mu(F_n) = \lim_{n \to \infty} \mu(E_n).$$

Folland 1.12. Recall the notation $A \triangle B := (A \setminus B) \cup (B \setminus A)$ is the symmetric difference

(a) We have

$$0 = \mu(E \triangle F) = \mu((E \setminus F) \cup (F \setminus E)) = \mu(E \setminus F) + \mu(F \setminus E).$$

Hence both

$$\mu(E \setminus F) = \mu(F \setminus E) = 0.$$

In particular

$$\mu(E) = \mu(E \cap F) + \mu(E \setminus F) = \mu(E \cap F) = \mu(F \cap E) + \mu(F \setminus E) = \mu(F).$$

- (b) We verify the requirements of an equivalence relation.
 - $E \sim E$ since $\mu(E \triangle E) = \mu((E \setminus E) \cup (E \setminus E)) = \mu(\emptyset) = 0$.
 - $E \sim F \implies F \sim E \text{ since } E \triangle F = F \triangle E$
 - If $E \sim F$ and $F \sim G$, then $E \sim G$ since $E \triangle G \subset (E \triangle F) \cup (F \triangle G)$ and so

$$\mu(E\triangle G) \le \mu(E\triangle F) + \mu(F\triangle G) = 0.$$

(c) Write it out:

$$\rho(E,G) = \mu(E \setminus G) + \mu(G \setminus E)$$

$$= \mu((E \cap F^c) \setminus G) + \mu((E \cap F) \setminus G) + \mu((G \cap F^c) \setminus E) + \mu((G \cap F) \setminus E)$$

$$\leq \mu(E \setminus F) + \mu(F \setminus G) + \mu(G \setminus F) + \mu(F \setminus E)$$

$$= \rho(E,F) + \rho(F,G).$$

Folland 1.13. Let μ be a σ -finite measure on (X, \mathcal{M}) , we seek to show that μ is semi-finite. Since μ is σ -finite there exists a disjoint sequence $\{A_n\}_{n\in\mathbb{N}}$ in \mathcal{M} with $\bigcup_{n=1}^{\infty}A_n=X$ and $\mu(A_n)<\infty$. Let $E\in\mathcal{M}$ with $\mu(E)=\infty$. Let $E_n = A_n \cap E$, so that

$$\bigcup_{n=1}^\infty E_n=\bigcup_{n=1}^\infty A_n\cap E=X\cap E=E.$$
 In particular (note that E_n are disjoint since A_n are)

$$\infty = \mu(E) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n).$$

We know that $\mu(E_n) \leq \mu(A_n) < \infty$ and that $\mu(E_n)$ cannot be zero for all n or else the sum wouldn't diverge. Thus there is some $E_m \subset E$ such that $0 < \mu(E_m) < \infty$ as required.

Folland 1.14. Suppose not. That is, suppose there is some C>0 such that for all $F\subset E$, either $\mu(F)=\infty$ or $\mu(F) \leq C$. Since μ is semi-finite and $\mu(E) = \infty$ there exists $F_1 \subset E$ with $0 < \mu(F_1) < \infty$. If $\mu(F_1) > C$ we're done so assume that $\mu(F_1) \leq C$. Then $\mu(E \setminus F_1) = \infty$ and by semi-finiteness there exists $G \subset E \setminus F_1$ with $0 < \mu(G) < \infty$. Notice that F_1 and G are disjoint and so

$$\mu(F_1 \cup G) = \mu(F_1) + \mu(G) > \mu(F_1).$$

Furthermore $F_1 \cup G \subset E$ so $\mu(F_1 \cup G) \leq C$. Let $F_2 = F_1 \cup G$, and iteratively construct a strictly sequence

$$\mu(F_1) < \mu(F_2) < \mu(F_3) < \dots < C.$$

This is a strictly increasing sequence bounded above so it converges to some limit $L \leq C$. Let $F = \bigcup_{i=1}^{\infty} F_i$, then by continuity from below

$$\mu(F) = \lim_{n \to \infty} \mu(F_n) = L \le C < \infty.$$

In particular $\mu(E \setminus F) = \mu(E) - \mu(F) = \infty$. By semi-finiteness there exists $A \subset E \setminus F$ with $0 < \mu(A) < \infty$, but then $\mu(F \cup A) = L + \mu(A) > L$. But $\mu(F \cup A) < \infty$ and therefore $\mu(F \cup A) \le C$ so $F \cup A$ would have been contained in our sequence, contradicting the fact that L was in fact the limit.

Folland 1.15. Let $\mu_0(E) = \sup \{ \mu(F) : F \subset E \text{ and } \mu(F) < \infty \}.$

(a) We should first show that μ_0 is a measure. First of all the only subset of the empty set is the empty set itself $\mu_0(\emptyset) = \sup\{\mu(\emptyset)\} = 0$. Now let $\{E_i\}_{i \in \mathbb{N}}$ be disjoint and let $E = \bigcup_{i=1}^{\infty} E_i$. Our goal is to show

$$\mu_0(E) = \sum_{i=1}^{\infty} \mu_0(E_i).$$

Take any $F \subset E$ with $\mu(F) < \infty$ and set $F_i = F \cap E_i$. Then $\bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} (F \cap E_i) = F \cap E = F$. Moreover (1) the F_i are disjoint and (2) $F_i \subset E_i$ with $\mu(F_i) \leq \mu(F) < \infty$ so

$$\mu(F) = \sum_{i=1}^{\infty} \mu(F_i) \le \sum_{i=1}^{\infty} \mu_0(E_i).$$

Since $F \subset E$ with $\mu(F) < \infty$ was arbitrary we can take the supremum over all such F to obtain

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(E_i).$$

On the other hand if $\mu_0(E)=\infty$ then $\mu_0(E)\geq\sum_{i=1}^\infty\mu_0(E_i)$ holds immediately. So assume $\mu_0(E)<\infty$. Notice that $\mu_0(E_i)\leq\mu_0(E)<\infty$, so let $\varepsilon>0$ and choose $F_i\subset E_i$ such that $\mu_0(E_i)-\varepsilon/2^i\leq\mu_0(F_i)$. Then notice that $\bigcup_{i=1}^nF_i\subset E$ and has finite measure, moreover the F_i are disjoint. Thus

$$\mu_0(E) \ge \mu\left(\bigcup_{i=1}^n F_i\right) = \sum_{i=1}^n \mu(F_i) \ge \sum_{i=1}^n \mu_0(E_i) - \sum_{i=1}^n \frac{\varepsilon}{2^i}.$$

Letting $n \to \infty$ yields

$$\mu_0(E) \ge \sum_{i=1}^{\infty} \mu_0(E_i) - \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary we conclude the desired result.

That μ_0 is semi-finite is immediate. Suppose $\mu_0(E) = \infty$, then by definition of the supremum for all $n \in \mathbb{N}$ there is $F \subset E$ with $\mu(F) < \infty$ such that $\mu(F) > n > 0$. In particular $\mu(F) = \mu_0(F)$ so μ_0 is semi-finite.

(b) If $\mu(E) < \infty$, then immediately $\mu(E) = \mu_0(E)$. If $\mu(E) = \infty$, then by Problem 1.14 for any C > 0, there is some $F \subset E$ with $\mu(F) < \infty$ such that $\mu(F) > C$. In particular

$$\mu_0(E) = \sup\{\mu(F) : F \subset E \text{ and } \mu(F) < \infty\} = \infty.$$

(c) Define

$$\nu(E) = \begin{cases} 0 & \text{if } E \text{ is } \sigma\text{-finite} \\ \infty & \text{if } E \text{ is not } \sigma\text{-finite} \end{cases},$$

where E being σ -finite means it can be written as the countable union of finite measure sets. Now we show that ν is a measure. $\nu(\emptyset)=0$ since the empty set is σ -finite. Now let $E=\bigcup_{n=1}^\infty E_n$ be a disjoint union. If each E_n is σ -finite then so is E and so $\nu(E)=0=\sum_{n=1}^\infty \nu(E_n)$. If any one of the E_n is not σ -finite then neither is E. (If E was σ -finite then $E=\bigcup_{j=1}^\infty F_j$ where F_j have finite measure and then

$$E_n = E_n \cap E = E_n \cap \bigcup_{j=1}^{\infty} F_j = \bigcup_{j=1}^{\infty} (E_n \cap F_j)$$

and $\mu(E_n \cap F_j) < \infty$ so E_n is σ -finite, a contradiction). Hence $\nu(E) = \infty = \sum_{n=1}^{\infty} \nu(E_n)$.

It just remains to show that $\mu=\mu_0+\nu$. If $\mu(E)<\infty$ or if E is not σ -finite then this is obvious. If $\mu(E)=\infty$ but E is σ -finite exercise 1.13 guarantees μ is semi-finite with respect to E and exercise 1.14 guarantees arbitrary large finite measure subsets of E. In particular $\mu_0(E)=\infty$. In summary:

$$\mu(E) = \begin{cases} \mu(E) + 0 & \mu(E) < \infty \\ \infty + 0 & \mu(E) = \infty \text{ and } E \text{ is } \sigma\text{-finite} \\ \mu_0(E) + \infty & \mu(E) = \infty \text{ and } E \text{ isn't } \sigma\text{-finite} \end{cases} = \mu_0(E) + \nu(E).$$

Folland 1.16.

(a) Let $X = \bigcup_{n=1}^{\infty}$ be a disjoint union with $\mu(E_n) < \infty$. Let $E \in \tilde{\mathcal{M}}$. Then by local measurability $E \cap E_n \in \mathcal{M}$ and so

$$E = E \cap X = E \cap \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} (E \cap E_n) \in \mathcal{M}.$$

(b) $\tilde{\mathcal{M}}$ is non-empty since \mathcal{M} is non-empty. $\tilde{\mathcal{M}}$ is closed under complement since if $E \in \tilde{\mathcal{M}}$ we have

$$E^c \cap A = (E^c \cup A^c) \cap A = (E \cap A)^c \cap A \in \mathcal{M}$$

for all $A \in \mathcal{M}$ with $\mu(A) < \infty$. $\tilde{\mathcal{M}}$ is closed under countable union since for $\{E_n\}_{n \in \mathbb{N}}$ in $\tilde{\mathcal{M}}$ we have

$$\left(\bigcup_{n=1}^{\infty} E_n\right) \cap A = \bigcup_{n=1}^{\infty} (E_n \cap A) \in \mathcal{M}$$

for all $A \in \mathcal{M}$ with $\mu(A) < \infty$.

(c) First we show that $\tilde{\mu}$ defined on $\tilde{\mathcal{M}}$ by

$$\tilde{\mu}(E) = \begin{cases} \mu(E) & E \in \mathcal{M} \\ \infty & \text{otherwise} \end{cases}$$

is a measure. Immediately $\tilde{\mu}(\emptyset) = \mu(\emptyset) = 0$. Now let $E = \bigcup_{n=1}^{\infty} E_n$ be a disjoint union in $\tilde{\mathcal{M}}$. If E is measurable with $\mu(E) < \infty$, then by local measurability of E_n we have $E_n = E_n \cap E \in \mathcal{M}$ and so

$$\tilde{\mu}(E) = \mu(E) = \sum_{n=1}^{\infty} \mu(E_n) = \sum_{n=1}^{\infty} \tilde{\mu}(E_n).$$

If all the E_n are measurable then so is E, so assume that at least one of the E_n is not measurable. If E is measurable with $\mu(E)=\infty$ or if E is only locally measurable we have $\tilde{\mu}(E)=\infty=\sum_{n=1}^\infty \tilde{\mu}(E_n)$. Now we show that $\tilde{\mu}$ is saturated. Let $E\subset X$ be such that $E\cap A\in \tilde{\mathcal{M}}$ for all $A\in \tilde{\mathcal{M}}$ with $\tilde{\mu}(A)<\infty$. By definition of $\tilde{\mu}$ this is equivalent to $E\cap A\in \tilde{\mathcal{M}}$ for all $A\in \mathcal{M}$ with $\mu(A)<\infty$. Since $E\cap A\in \tilde{\mathcal{M}}$ we can use local measurability to intersect it with E to obtain E to E t

- (d) Let $N \in \tilde{\mathcal{M}}$ with $\tilde{\mu}(N) = 0$. By definition of $\tilde{\mu}$ we have $N \in \mathcal{M}$ and $\mu(N) = 0$. By completeness of μ we have $Z \in \mathcal{M}$ for any $Z \subset N$. Finally since $\mathcal{M} \subset \tilde{\mathcal{M}}$ we have that $Z \in \tilde{\mathcal{M}}$ and so $\tilde{\mu}$ is complete.
- (e) Notice that μ is exactly the semi-finite part of $\tilde{\mu}$. Indeed

$$\mu(E) = \sup\{\mu(A) : A \in \mathcal{M} \text{ and } A \subset E\} = \sup\{\tilde{\mu}(A) : A \subset E \text{ and } \tilde{\mu}(A) < \infty\}$$

This is clear if for all $A \subset E$ we have $\mu(A) < \infty$. But even if there is $A \subset E$ with $\mu(A) = \infty$, by semi-finiteness there exist $F \subset A \subset E$ of arbitrarily large finite measure. Hence the supremum will still agree. In particular as the semi-finite part of a measure we have that μ is a measure. μ extends μ since for $E \in \mathcal{M}$

$$\mu(E) = \sup{\{\mu(A) : A \in \mathcal{M} \text{ and } A \subset E\}} = \mu(E).$$

Finally $\underline{\mu}$ is saturated since for any $E \subset X$ with $E \cap A \in \tilde{\mathcal{M}}$ for all $A \in \tilde{\mathcal{M}}$ with $\underline{\mu}(A) < \infty$ we can consider any $A \in \mathcal{M}$ and note that $\underline{\mu}(A) = \mu(A) < \infty$ and since $E \cap A \in \tilde{\mathcal{M}}$ we have $(E \cap A) \cap A = E \cap A \in \mathcal{M}$ for all $A \in \mathcal{M}$ with $\mu(A) < \infty$. In particular $E \in \tilde{\mathcal{M}}$.

(f) First μ is a measure since $\mu(\emptyset) = \mu_0(\emptyset \cap X_1) = \mu_0(\emptyset) = 0$ and for $E = \bigcup_{n=1}^{\infty} E_n$ disjoint in \mathcal{M} we have

$$\mu(E) = \mu_0(E \cap X_1) = \mu_0\left(\bigcup_{n=1}^{\infty} (E_n \cap X_1)\right) = \sum_{n=1}^{\infty} \mu_0(E_n \cap X_1) = \sum_{n=1}^{\infty} \mu(E_n)$$

since $E_n\cap X_1$ are disjoint and μ_0 is a measure. Let $E\subset X$ and $A\in \mathcal{M}$ with $\mu(A)<\infty$. Then either A or A^c is countable. However, notice that $\mu(A)=\mu_0(A\cap X_1)<\infty$, so the portion of A residing X_1 is finite. But then $X_1\setminus A$ is uncountable and so A^c cannot be countable. If A is countable so is $E\cap A$ and hence $E\cap A\in \mathcal{M}$. Now finally, consider $E=X_2$. We have $E^c=X_1$ so $E\not\in \mathcal{M}$ since neither E nor E^c are countable and hence $\tilde{\mu}(E)=\infty$. But on the other hand all subsets of E are disjoint from X_1 so $\mu(A)=\mu_0(A\cap X_1)=\mu_0(\emptyset)=0$ for any $A\subset E$, hence $\mu(E)=0$.

Folland 1.17. Let $A = \bigcup_{j=1}^{\infty} A_j$. Then by subadditivity we have

$$\mu^{\star}(E \cap A) = \mu^{\star} \left(\bigcup_{j=1}^{\infty} (E \cap A_j) \right) \le \sum_{j=1}^{\infty} \mu^{\star}(E \cap A_j).$$

On the other hand, let $F_j = E \cap \bigcup_{k=j}^{\infty} A_k$. Then

$$\mu^{\star}(F_j) = \mu^{\star}(E \cap A_j) + \mu^{\star}(F_{j+1})$$

and $F_1 = E \cap A$, so recursively we obtain

$$\mu^{\star}(E \cap A) = \sum_{j=1}^{n} \mu^{\star}(E \cap A_j) + \mu^{\star}(F_{n+1}) \ge \sum_{j=1}^{n} \mu^{\star}(E \cap A_j)$$

for any $n \in \mathbb{N}$. Letting $n \to \infty$ yields the desired result.

Folland 1.18. First recall the definition

$$\mu^{\star}(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu_0(A_n) : E \subset \bigcup_{n=1}^{\infty} A_n \text{ and } A_n \in \mathcal{A} \right\}$$

(a) By the definition of infimum there exist $\{A_n\}_{n\in\mathbb{N}}$ in \mathcal{A} such that

$$\mu^{\star}(E) + \varepsilon \ge \sum_{n=1}^{\infty} \mu_0(A_n) = \sum_{n=1}^{\infty} \mu^{\star}(A_n) \ge \mu^{\star} \left(\bigcup_{n=1}^{\infty} A_n\right),$$

where the last inequality follows from subadditivity. Hence Let $A = \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}_{\sigma}$.

(b) Suppose E is μ^* -measurable. Let $A_n \in \mathcal{A}_{\sigma}$ be such that $\mu^*(A_n) \leq \mu^*(E) + 1/n$. Let $B = \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}_{\sigma\delta}$. Then since $E \subset A_n$ for all $n \in \mathbb{N}$, we have $E \subset B$ also. Then since E is μ^* -measurable:

$$\mu^{\star}(E) + 1/n \ge \mu^{\star}(A_n) \ge \mu^{\star}(B) = \mu^{\star}(B \cap E) + \mu^{\star}(B \cap E^c) = \mu^{\star}(E) + \mu^{\star}(B \setminus E) \quad \forall n \in \mathbb{N}.$$

Then since $\mu^{\star}(E) < \infty$ we have $0 \le \mu^{\star}(B \setminus E) \le 1/n$ for all $n \in \mathbb{N}$, and so $\mu^{\star}(B \setminus E) = 0$. On the other hand suppose there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^{\star}(B \setminus A) = 0$. It suffices to show that

$$\mu^{\star}(F) \ge \mu^{\star}(F \cap E) + \mu^{\star}(F \cap E^c)$$

for all $F \subset X$ with $\mu^*(F) < \infty$. Since $B \in \mathcal{A}_{\sigma\delta}$ it is μ^* measurable and so

$$\mu^{\star}(F) = \mu^{\star}(F \cap B) + \mu^{\star}(F \cap B^{c}) \ge \mu^{\star}(F \cap E) + \mu^{\star}(F \cap B^{c}).$$

Moreover, since $E \subset B$, we can write $E^c = B^c \cup (B \cap E^c)$ so

$$\mu^{\star}(F \cap E^c) = \mu^{\star}(F \cap (B^c \cup (B \cap E^c))) \le \mu^{\star}(F \cap B^c) + \underbrace{\mu^{\star}(F \cap (B \cap E^c))}_{\leq \mu^{\star}(B \cap E^c) = 0} \le \mu^{\star}(F \cap B^c).$$

So we see that

$$\mu^{\star}(F) \ge \mu^{\star}(F \cap E) + \mu^{\star}(F \cap E^c)$$

as desired.

(c) If μ_0 is σ -finite, write $X=\bigcup_{j=1}^\infty X_j$ where each X_j has finite μ_0 measure. Let $E_j=E\cap X_j$ which has finite μ^\star measure and $E=\bigcup_{j=1}^\infty E_j$. Fix $n\in\mathbb{N}$ and choose $C_j\supset E$ so that

$$\mu^*(E_j) + \frac{1}{n2^j} \ge \mu^*(C_j) = \mu^*(E_j) + \mu^*(C_j \setminus E_j) \implies \mu^*(C_j \setminus E_j) \le \frac{1}{n2^j}.$$

Let $B_n = \bigcup_{j=1}^{\infty} C_j \in \mathcal{A}_{\sigma}$ and notice that $E^c \subset E_j^c$. Now

$$\mu^{\star}(B_n \setminus E) = \mu^{\star}\left(\bigcup_{j=1}^{\infty} (C_j \cap E^c)\right) \le \mu^{\star}\left(\bigcup_{j=1}^{\infty} (C_j \cap E_j^c)\right) \le \sum_{j=1}^{\infty} \mu^{\star}(C_j \setminus E_j) \le \frac{1}{n}.$$

Now let $B = \bigcap_{n=1}^{\infty} B_n \in \mathcal{A}_{\sigma\delta}$ so that $\mu^{\star}(B \setminus E) \leq \mu^{\star}(B_n \setminus E) \leq 1/n$ for all $n \in \mathbb{N}$. In particular $\mu^{\star}(B \setminus E) = 0$. For the other direction we did not need $\mu^{\star}(E) < \infty$.

Folland 1.19. If E is μ^* -measurable then

$$\mu^{\star}(X) = \mu^{\star}(E) + \mu^{\star}(E^{c}) \implies \mu^{\star}(E) = \mu^{\star}(X) - \mu^{\star}(E^{c}) = \mu_{0}(X) - \mu^{\star}(E^{c}) = \mu_{\star}(E).$$

On the other hand if $\mu^*(E) = \mu_*(E)$ choose $A_n \in \mathcal{A}_\sigma$ so that $E \subset A_n$ and $\mu^*(A_n) \leq \mu^*(E) + 1/n$. Notice that A_n is μ^* -measurable, so

$$\mu^{\star}(E^c) = \mu^{\star}(E^c \cap A_n) + \mu^{\star}(E^c \cap A_n^c) = \mu^{\star}(A_n \setminus E) + \mu^{\star}(A_n^c).$$

Moreover since $\mu^*(E) = \mu_*(E)$ and A_n is μ^* -measurable:

$$\mu^{\star}(E) = \mu_{\star}(E) = \mu^{\star}(X) - \mu^{\star}(E^{c}) = \mu^{\star}(A_{n}) + \mu^{\star}(A_{n}^{c}) - \mu^{\star}(E^{c}).$$

Taken together we have

$$\mu^*(A_n \setminus E) = \mu^*(E^c) - \mu^*(A_n^c) = \mu^*(A_n) - \mu^*(E) \le \frac{1}{n}.$$

Now let $B = \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}_{\sigma\delta}$ so that

$$\mu^{\star}(A \setminus E) \le \mu^{\star}(A_n \setminus E) \le \frac{1}{n}$$

for all $n \in \mathbb{N}$. It follows that $\mu^*(B \setminus E) = 0$ for some $B \in \mathcal{A}_{\sigma\delta}$ and so by 1.18 (b) we have that E is μ^* -measurable.

Folland 1.20. First write the definition

$$\mu^+(E) = \inf \left\{ \sum_{n=1}^{\infty} \overline{\mu}(A_n) : \bigcup_{n=1}^{\infty} A_n \text{ and } A_n \in \mathcal{M}^* \right\}.$$

(a) Let $\varepsilon > 0$. By infimum properties there exists $A = \bigcup_{n=1}^{\infty} A_n \supset E$ such that

$$\mu^{+}(E) + \varepsilon \ge \sum_{n=1}^{\infty} \overline{\mu}(A_n) = \sum_{n=1}^{\infty} \mu^{*}(A_n) \ge \mu^{*}(A) \ge \mu^{*}(E).$$

Moreover, if there is an $A \in \mathcal{M}^*$ with $A \supset E$ and $\mu^*(A) = \mu^*(E)$ then

$$\mu^{+}(E) \le \overline{\mu}(A) = \mu^{\star}(A) = \mu^{\star}(E).$$

And if $\mu^+(E) = \mu^*(E)$ then by properties of infimum there exists $\{A_j\}_{j=1}^{\infty}$ such that

$$\sum_{j=1}^{\infty} \overline{\mu}(A_j) \le \mu^+(E) + \frac{1}{n}.$$

Now set $A_n = \bigcup_{j=1}^{\infty} A_j$ so that

$$\mu^*(A_n) \le \sum_{j=1}^{\infty} \mu^*(A_j) = \sum_{j=1}^{\infty} \overline{\mu}(A_j) \le \mu^+(E) + \frac{1}{n}.$$

Finally let $A = \bigcap_{n=1}^{\infty} A_n$ so that

$$\mu^*(A) \le \mu^*(A_n) \le \mu^+(E) + \frac{1}{n},$$

for all $n \in \mathbb{N}$. It follows that $\mu^*(A) \leq \mu^+(E) = \mu^*(E)$. Moreover, $E \subset A$ and so $\mu^*(E) \leq \mu^*(A)$ and therefore we have $\mu^*(E) = \mu^*(A)$.

(b) Let $E \subset X$, we already have $\mu^*(E) \leq \mu^+(E)$. Let $\varepsilon > 0$ then by 1.18 (a) there is $A \in \mathcal{A}_{\sigma}$ such that $A \supset E$, $A \in \mathcal{A}_{\sigma} \subset \mathcal{M}^*$ and $\mu^*(A) \leq \mu^*(E) + \varepsilon$. Hence

$$\mu^{\star}(E) \ge \mu^{\star}(A) - \varepsilon = \overline{\mu}(A) - \varepsilon \ge \mu^{+}(E) - \varepsilon.$$

(c) $\mathcal{P}(X) = \{\emptyset, \{0\}, \{1\}, X\}$. Let $\mu^*(\emptyset) = 0$, $\mu^*(\{0\}) = \mu^*(\{1\}) = 2$ and $\mu^*(X) = 3$. This defines a valid outer measure. But then $\{0\}$ and $\{1\}$ are not μ^* -measurable. Hence $\mu^+(\{0\}) = \mu^*(X) = 4 \neq 2 = \mu^*(\{0\})$.

Folland 1.21. Let $\mathcal M$ be the μ^\star -measurable sets. Let $E\in \tilde{\mathcal M}$, namely $E\cap A\in \mathcal M$ for all $A\in \mathcal M$ with $\overline{\mu}(A)<\infty$. We must show that E is μ^\star -measurable. Let $F\subset X$ with $\mu^\star(F)<\infty$. Let $\varepsilon>0$. Then by 1.18 (a) there exists $A\supset F$ with $\mu^\star(A)\leq \mu^\star(F)+\varepsilon$. Moreover, A is μ^\star -measurable with finite outer measure and since $E\in \tilde{\mathcal M}$ we have $E\cap A$ is μ^\star -measurable. Thus

$$\mu^{\star}(F) + \varepsilon \ge \mu^{\star}(A)$$

$$= \mu^{\star}(A \cap (E \cap A)) + \mu^{\star}(A \cap (E \cap A)^{c})$$

$$= \mu^{\star}(A \cap E) + \mu^{\star}(A \cap (E^{c} \cup A^{c}))$$

$$= \mu^{\star}(A \cap E) + \mu^{\star}(A \cap E^{c})$$

$$\geq \mu^{\star}(F \cap E) + \mu^{\star}(F \cap E^{c})$$

Since $\varepsilon > 0$ was arbitrary, we see that $\mu^*(F) \ge \mu^*(F \cap E) + \mu^*(F \cap E^c)$ and so E is μ^* -measurable as desired.

Folland 1.22.

Folland 1.23.

Folland 1.24.

(a) First notice that

$$(A \setminus B) \cap E = (A \cap B^c) \cap E = (A \cap E) \cap B^c = (B \cap E) \cap B^c = \emptyset.$$

And similarly $(B \setminus A) \cap E = \emptyset$. Hence $A \triangle B \subset E^c$. In particular

$$\mu^{\star}(X) = \mu^{\star}(E) \le \mu^{\star}((A \triangle B)^{c}) \le \mu^{\star}(X),$$

from which it follows that $\mu^*((A\triangle B)^c) = \mu^*(X)$. Moreover, since $A\triangle B$ is μ^* -measurable, we write

$$\mu^{\star}(X) = \mu^{\star}(A \triangle B) + \mu^{\star}((A \triangle B)^{c}) = \mu^{\star}(A \triangle B) + \mu^{\star}(X).$$

So $\mu(X) = \mu(A \triangle B) + \mu(X)$ and therefore $\mu(A \triangle B) = 0$. Then by problem 1.12 (a) we have that $\mu(A) = \mu(B)$.

(b) The collection $\mathcal{M}_E=\{A\cap E: A\in \mathcal{M}\}$ is a σ -algebra on E. It is non-empty since \mathcal{M} is non-empty. The complement of $A\cap E$ in E is $A^c\cap E$. Finally $\bigcup_{n=1}^\infty (A_n\cap E)=(\bigcup_{n=1}^\infty A_n)\cap E$. Now to show that $\nu(A\cap E)=\mu(A)$ is a measure. First $\nu(\emptyset)=\nu(\emptyset\cap E)=\mu(\emptyset)=0$. Now for a disjoint collection $\{A_n\cap E\}_{n\in\mathbb{N}}$ of sets of in \mathcal{M}_E we may not have the $\{A_n\}_{n\in\mathbb{N}}$ be disjoint in \mathcal{M} , so let $B_n=A_n\setminus\bigcup_{k=1}^{n-1}A_k$ which are disjoint and $\bigcup_{n=1}^\infty B_n=\bigcup_{n=1}^\infty A_n$. Moreover

$$B_n \cap E = (A_n \cap E) \setminus \bigcup_{k=1}^{n-1} (A_k \cap E) = A_n \cap E$$

since the $A_k \cap E$ are disjoint. And so finally

$$\nu\left(\bigcup_{n=1}^{\infty}(A_n\cap E)\right)=\nu\left(\bigcup_{n=1}^{\infty}B_n\cap E\right)=\mu\left(\bigcup_{n=1}^{\infty}B_n\right)=\sum_{n=1}^{\infty}\mu(B_n)=\sum_{n=1}^{\infty}\nu(B_n\cap E)=\sum_{n=1}^{\infty}\nu(A_n\cap E).$$

Folland 1.25. Recall Theorem 1.19: If $E \subset \mathbb{R}$ the following are equivalent.

- (a) $E \in \mathcal{M}_{\mu}$
- (b) $E = V \setminus N$ where V is a G_{δ} set and $\mu(N) = 0$
- (c) $E = H \cup N$ where H is an F_{σ} and $\mu(N) = 0$.

Folland already proves (a) \Longrightarrow (b) and (a) \Longrightarrow (c) for finite $\mu(E)$. Moreover, (a) \Longrightarrow (c) implies (a) \Longrightarrow (b) since if $E \in \mathcal{M}_{\mu}$ so $E^c \in \mathcal{M}_{\mu}$. Then $E^c = H \cup N$. Let $V = H^c$ which is a G_{δ} set since $V = \left(\bigcup_{n=1}^{\infty} H_n\right)^c = \bigcap_{n=1}^{\infty} H_n^c = \bigcap_{n=1}^{\infty} V_n$, and each V_n is open since each V_n is closed. And V_n since $V_n = V \setminus V_n$ since $V_n = V_n \cap V_n$ since $V_n = V_n \cap$

$$E = \bigcup_{j \in \mathbb{Z}} E_j = \bigcup_{j \in \mathbb{Z}} (H_j \cup N_j) = H \cup N,$$

where $H=\bigcup_{j\in\mathbb{Z}}H_j$ and $N=\bigcup_{j\in\mathbb{Z}}$. Notice that H is still F_σ , and that $\mu(N)\leq \mu(N_j)=0$.

Folland 1.26. Recall proposition 1.20: If $E \in \mathcal{M}_{\mu}$ and $\mu(E) < \infty$, then for every $\varepsilon > 0$ there is a set A that is a finite union of open intervals such that $\mu(E \triangle A) < \varepsilon$. Recall also $\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j,b_j)) : E \subset \bigcup_{j=1}^{\infty} (a_j,b_j) \right\}$. Let $\varepsilon > 0$ and denote $I_j = (a_j,b_j)$. By definition of the infimum there exist $\{I_j\}_{j \in \mathbb{N}}$ such that

$$\sum_{j=1}^{\infty} \mu(I_j) \le \mu(E) + \varepsilon/2,$$

and since $\mu(E) < \infty$ this sum is convergent. So there is $N \in \mathbb{N}$ such that $\sum_{j=N}^{\infty} \mu(I_j) < \varepsilon/2$. Let $A = \bigcup_{j=1}^{N-1} I_j$. Then

$$\mu(A \setminus E) \leq \mu(I \setminus E) \leq \frac{\varepsilon}{2} \quad \text{and} \quad \mu(E \setminus A) \leq \mu(I \setminus A) = \mu\left(\bigcup_{j=N}^{\infty} I_j\right) < \frac{\varepsilon}{2}.$$

Taken together we have $\mu(E \triangle A) = \mu(E \setminus A) + \mu(A \setminus E) < \varepsilon$.

Folland 1.27.

Folland 1.28.

Folland 1.29.

(a)

Folland 1.30. Suppose not, namely that there is $\alpha < 1$ such that for all open intervals I we have $m(E \cap I) \leq \alpha m(I)$. Assuming $m(E) < \infty$. By the definition of m there is a collection of intervals such that $I = \bigcup_{i=1}^{\infty} I_i \supset E$ and

$$\sum_{j=1}^{\infty} \mu(I_j) < (1+\varepsilon)m(E).$$

But then

$$m(E) = m(E \cap I) \le \sum_{j=1}^{\infty} m(E \cap I_j) \le \alpha \sum_{j=1}^{\infty} m(I_j) < \alpha(1+\varepsilon)m(E).$$

This is a contradiction if $\alpha(1+\varepsilon)<1$ or equivalently if $\varepsilon<1/\alpha-1$. Such an $\varepsilon>0$ can be chosen since $\alpha<1$ implies $1/\alpha-1>0$. If $m(E)=\infty$ we use σ -finiteness to write $E=\bigcup_{n=1}^\infty E_n$ each with $\mu(E_n)<\infty$. At least one must be positive from which for any $\alpha>1$ there exists an open interval such that $m(E_k\cap I)>\alpha m(I)$. Finally $m(E\cap I)\geq m(E_k\cap I)>\alpha m(I)$ as desired.

Folland 1.31.

Folland 1.32.

Folland 1.33.

Folland 2.1.

Folland 3.1. Let ν be a signed measure on (X, \mathcal{M}) . Let $E_1 \subset E_2 \subset \cdots$, and write $\bigcup_{j=1}^{\infty} E_j = E_1 \cup \left[\bigcup_{j=2}^{\infty} (E_j \setminus E_{j-1})\right]$. Then

$$\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \nu(E_1) + \sum_{j=1}^{\infty} \nu(E_j \setminus E_{j-1}) = \nu(E_1) + \lim_{n \to \infty} \sum_{j=1}^{n} \nu(E_j \setminus E_{j-1}) = \lim_{n \to \infty} \nu(E_n).$$

Now suppose $E_1 \supset E_2 \supset \cdots$ with $\nu(E_1)$ finite. Write $F_j = E_1 \setminus E_j$ so that $F_1 \subset F_2 \subset \cdots$. Now

$$\nu\left(\bigcup_{j=1}^{\infty} F_j\right) = \nu\left(\bigcup_{j=1}^{\infty} (E_1 \cap E_j^c)\right) = \nu\left(E_1 \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c\right) = \nu(E_1) - \nu\left(\bigcap_{j=1}^{\infty} E_j\right).$$

Moreover $\nu(F_j) = \nu(E_1) - \nu(E_j)$. Finally by continuity from below:

$$\nu(E_1) - \lim_{j \to \infty} \nu(E_j) = \lim_{j \to \infty} \nu(F_j) = \nu\left(\bigcup_{j=1}^{\infty} F_j\right) = \nu(E_1) - \nu\left(\bigcap_{j=1}^{\infty} E_j\right),$$

and since $\nu(E_1)$ is finite, the claim follows.

Folland 3.2. Let ν be a signed measure. Let $\nu = \nu^+ - \nu^-$ be its Jordan decomposition and $X = P \cup N$ be the associated Hahn decomposition. Namely $\nu^+(E) = \nu(E \cap P), \nu^-(E) = -\nu(E \cap N), \text{ and } N \cap P = \emptyset.$

If E is ν -null, then $|\nu|(E) = \nu^+(E) + \nu^-(E) = \nu(E \cap P) - \nu(E \cap N) = 0 - 0 = 0$. Since $E \cap P$, $E \cap N \subset E$. Conversely, if $|\nu|(E) = 0$, then for any $A \subset E$: $|\nu|(A) \le |\nu|(E) = 0$. In particular $\nu^+(A) + \nu^-(A) = 0$ implying $\nu^+(A) = \nu^-(A) = 0$. So $\nu(A) = 0$ and E is ν -null.

Suppose $\nu \perp \mu$. Namely there is $X = A \cup B$ such that A is ν -null, B is μ -null, and $A \cap B = \emptyset$. Then by the above A is $|\nu|$ -null also (since $|\nu|$ is a positive measure). So $|\nu| \perp \mu$.

Now suppose $|\nu| \perp \mu$. Namely there is $X = A \cup B$ such that A is $|\nu|$ -null, B is μ -null, and $A \cap B = \emptyset$. Since $|\nu|(E) = 0 \implies v^{\pm}(E) = 0$, we have that A is also ν^{\pm} -null, so $\nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.

Finally suppose that $\nu^+ \perp \mu$ and $\nu^- \perp \mu$. Namely there are $X = A^\pm \cup B^\pm$ such that A^\pm is ν^\pm -null, B^\pm is μ -null, and $A^\pm \cap B^\pm = \emptyset$. Then $A := A^+ \cap A^-$ is both ν^+ and ν^- -null, hence it is ν -null. Moreover, $B := A^c = A^{+^c} \cup A^{-^c} = B^+ \cup B^-$ is μ -null and $A \cap B = \emptyset$. So $\nu \perp \mu$.

Folland 3.3. Let ν be a signed measure on (X, \mathcal{M}) . First a lemma. For positive measures μ_1, μ_2 and a non-negative measurable function f

$$\int f d(\mu_1 + \mu_2) = \int f d\mu_1 + \int f d\mu_2.$$

Indeed, first we prove the result for simple functions $s = \sum_{i=1}^{n} a_i \chi_{E_i}$ (w.l.o.g. assume E_i are disjoint). Then

$$\int sd(\mu_1 + \mu_2) = \sum_{i=1}^n a_i(\mu_1(E_i) + \mu_2(E_i)) = \sum_{i=1}^n a_i\mu_1(E_i) + \sum_{i=1}^n a_i\mu_2(E_i) = \int sd\mu_1 + \int sd\mu_2.$$

For any positive measurable f, there is a sequence of positive simple functions increasing monotonically to f, hence by the M.C.T.

$$\int f(d\mu_1 + \mu_2) = \lim_{n \to \infty} \int s_n d(\mu_1 + \mu_2) = \lim_{n \to \infty} \left(\int s_n d\mu_1 + \int s_n d\mu_2 \right) = \int f d\mu_1 + \int f d\mu_2.$$

(a) By definition

$$L^1(\nu) = L^1(\nu^+) \cap L^1(\nu^-) = \left\{ \text{measurable } f: \int |f| d\nu^+ < \infty \text{ and } \int |f| d\nu^- < \infty \right\}.$$

If $f \in L^1(\nu)$, then

$$\int |f|d|\nu| = \int |f|d(\nu^{+} + \nu^{-}) = \int |f|d\nu^{+} + \int |f|d\nu^{-} < \infty.$$

On the other hand if $f \in L^1(|\nu|)$, then $\int |f| d\nu^\pm \le \int |f| d|\nu| < \infty$. So $L^1(\nu) \subset L^1(|\nu|)$ and $L^1(|\nu|) \subset L^1(\nu)$.

(b)

$$\left| \int f d\nu \right| = \left| \int f d\nu^+ - \int f d\nu^- \right| \le \left| \int f d\nu^+ \right| + \left| \int f d\nu^- \right| \le \int |f| d\nu^+ + \int |f| d\nu^- = \int |f| d|\nu|.$$

(c) Let P,N be the Hahn decomposition such that $\nu^+(A) = \nu(A \cap P)$ and $\nu^-(A) = -\nu(A \cap N)$. Then $|\chi_P - \chi_N| \le 1$ and $\int_E \chi_P - \chi_N d\nu = \nu(E \cap P) - \nu(E \cap N) = |\nu|(E)$ so $\sup\{|\int_E f d\nu| : |f| \le 1\} \ge |\nu|(E)$. On the other hand, for any measurable f with $|f| \le 1$:

$$\left| \int_{E} f d\nu \right| = \left| \int f \chi_{E} d\nu \right| \le \int |f \chi_{E}| d|\nu| \le \int \chi_{E} d|\nu| = |\nu|(E).$$

So $\sup\{|\int_E f d\nu| : |f| \le 1\} \le |\nu|(E)$ as desired.

Folland 3.4. Let P, N be the Hahn decomposition such that $\nu^+(A) = \nu(A \cap P)$ and $\nu^-(A) = -\nu(A \cap N)$. Then

$$\lambda(A) \ge \lambda(A \cap P) = \nu(A \cap P) + \mu(A \cap P) \ge \nu(A \cap P) = \nu^+(A)$$

$$\mu(A) \ge \mu(A \cap N) = \lambda(A \cap N) - \nu(A \cap N) \ge -\nu(A \cap N) = \nu^{-}(A).$$

Folland 3.5. $\nu_1 + \nu_2 = \nu_1^+ - \nu_1^- + \nu_2^+ - \nu_2^-$ is a signed measure, and $\nu_1^+ + \nu_2^+$ and $\nu_1^- + \nu_2^-$ are two positive measures satisfying the conditions of 3.4, hence: $\nu_1^+ + \nu_2^+ \geq (\nu_1 + \nu_2)^+$ and $\nu_1^- + \nu_2^- \geq (\nu_1 + \nu_2)^-$. Altogether

$$|\nu_1 + \nu_2| = (\nu_1 + \nu_2)^+ + (\nu_1 + \nu_2)^- \le \nu_1^+ + \nu_2^+ + \nu_1^- + \nu_2^- = |\nu_1| + |\nu_2|.$$

Folland 3.6. For $\nu(E) = \int_E f d\mu$ we have: $P = \{x \in X : f(x) \ge 0\}, \ N = \{x \in X : f(x) < 0\}, \ \nu^+(E) = \int_E f^+ d\mu, \ \nu^-(E) = -\int_E f^- d\mu, \ \text{and} \ |\nu|(E) = \int_E |f| d\mu. \ \text{Here} \ f^+ = \max\{f,0\} \ \text{and} \ f^- = \max\{-f,0\}.$

Folland 3.7.

- (a) First of all: $\nu^+(E) = \nu(E \cap P) \leq \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$. On the other hand, if $F \in \mathcal{M}$ with $F \subset E$, then $\nu(F) = \nu^+(F) \nu^-(F) \leq \nu^+(F) \leq \nu^+(E)$. So $\nu^+(E) \geq \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$. Similarly, $\nu^-(E) = -\nu(E \cap N) \leq -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\}$. And on the other hand, if $F \in \mathcal{M}$ with $F \subset E$, then $\nu(F) = \nu^+(F) \nu^-(F) \geq -\nu^-(F) \geq -\nu^-(E)$. So $\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\} \geq -\nu^-(E)$ or equivalently, $-\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\} \leq \nu^-(E)$.
- (b) Since $|\nu(E \cap P)| + |\nu(E \cap N)| = \nu^+(E) + \nu^-(E) = |\nu|(E)$ and $(E \cap P) \cup (E \cap N) = E$, we have that $|\nu|(E) \le \sup\{\sum_1^n |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ and disjoint, and } \bigcup_{j=1}^n E_j = E\}$. For the other direction, let E_1, \dots, E_n be disjoint with $\bigcup_{j=1}^n E_j = E$. Then

$$\sum_{j=1}^{n} |\nu(E_j)| \le \sum_{j=1}^{n} |\nu|(E_j) = |\nu|(E).$$

Since $|\nu(A)| = |\nu^+(A) - \nu^-(A)| \le \nu^+(A) + \nu^-(A) = |\nu|(A)$. In any case, we see that the supremum over all such E_1, \ldots, E_n is bounded b $|\nu|(E)$.

Folland 3.8. Let $\nu = \nu^+ - \nu^-$ be a Jordan decomposition and $X = P \cup N$ be the associated Hahn decomposition. Namely $\nu^+(E) = \nu(E \cap P)$, $\nu^-(E) = -\nu(E \cap N)$, and $N \cap P = \emptyset$. (I also assume μ is a positive measure).

Let $\nu \ll \mu$ and suppose $\mu(E)=0$. Then $\mu(E\cap P)\leq \mu(E)=0$, so $\nu^+(E)=\nu(E\cap P)=0$. Similarly, $\mu(E\cap N)=0$ and so $\nu^-(E)=-\nu(E\cap N)=0$. Namely $|\nu|(E)=\nu^+(E)+\nu^-(E)=0$.

Now let $|\nu| \ll \mu$ and suppose $\mu(E) = 0$. Then $|\nu|(E) = \nu^+(E) + \nu^-(E) = 0 \implies \nu^+(E) = \nu^-(E) = 0$.

Finally if $\nu^+ \ll \mu$ and $\nu^- \ll \mu$, and $\mu(E) = 0$, then $\nu(E) = \nu^+(E) - \nu^-(E) = 0 - 0 = 0$.

Folland 3.9. First suppose that $\nu_j \perp \mu$ for all $j \in \mathbb{N}$. Namely there exist disjoint sets M_j, N_j such that M_j is ν_j -null, N_j is μ -null and $M_j \cup N_j = X$ for all $j \in \mathbb{N}$. Consider, $N = \bigcap_{j=1}^{\infty} N_j$ which is ν_j -null for all j and so is $\sum_j \nu_j$ -null. Moreover $M = N^c = \bigcup_{j=1}^{\infty} M_j$ is μ -null. Hence $\sum_j \nu_j \perp \mu$.

Now suppose $\nu_j \ll \mu$ for all $j \in \mathbb{N}$. If $\mu(E) = 0$, then $\sum_{i=1}^{\infty} \nu_j(E) = \sum_{i=1}^{\infty} 0 = 0$, so $\sum_{i=1}^{\infty} \nu_i \ll \mu$.

Folland 3.10. Let ν be the counting measure and $\mu = \sum_{n \in E} 2^{-n}$ on \mathbb{N} . Then $\mu(E) = 0 \implies E = \emptyset$ so $\nu \ll \mu$. However, taking $\varepsilon = 1/2$, there is no $\delta > 0$ such that $|\nu(E)| < 1/2$ whenever $\mu(E) < \delta$. Indeed for any $\delta > 0$, one can choose $n \in \mathbb{N}$ so that $\mu(\{n\}) = 2^{-n} < \delta$ but $|\nu(\{n\})| = 1 > 1/2$.

Folland 3.11.

- (a) Let $\varepsilon>0$. For any function in $L^1(\mu)$ we have $\left|\int_E f\,\mathrm{d}\mu\right|\leq \int_E |f|\,\mathrm{d}\mu=:\nu(E)$, here $\nu\ll\mu$ by construction. Moreover ν is finite since f is integrable, and so by Theorem 3.5 there is $\delta>0$ such that $\left|\int_E f\,\mathrm{d}\mu\right|<\varepsilon$ whenever $\mu(E)<\delta$. For any finite collection $\{f_\alpha\}_{\alpha\in A}$, there is $\delta_\alpha>0$ such that $\left|\int_E f\,\mathrm{d}\mu\right|<\varepsilon$ whenever $\mu(E)<\delta_\alpha$. Take $\delta=\min\{\delta_\alpha:\alpha\in A\}$, which exists since A is finite. Hence $\{f_\alpha\}_{\alpha\in A}$ is uniformly integrable.
- (b) Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence in $L^1(\mu)$ such that $f_n \xrightarrow{L^1} f$. Namely $\int_X |f_n f| \, \mathrm{d}\mu \to 0$ as $n \to \infty$. Let $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\int |f_n f| \, \mathrm{d}\mu < \varepsilon/2$ for n > N. By part (a) $\mathcal{F} := \{f\} \cup \{f_n\}_{n=1}^N$ is uniformly integrable. Namely there is $\delta > 0$ such that $\left|\int_E f \, \mathrm{d}\mu\right| < \varepsilon/2$ whenever $\mu(E) < \delta$ for each $f \in \mathcal{F}$. For n > N,

$$\left| \int_{E} f_n \, \mathrm{d}\mu \right| = \left| \int_{E} (f_n - f) \, \mathrm{d}\mu + \int_{E} f \, \mathrm{d}\mu \right| \le \left| \int_{E} (f_n - f) \, \mathrm{d}\mu \right| + \left| \int_{E} f \, \mathrm{d}\mu \right| \le \int_{E} |f_n - f| \, \mathrm{d}\mu + \left| \int_{E} f \, \mathrm{d}\mu \right|.$$

The first term is bounded by $\varepsilon/2$ and the second term is bounded by $\varepsilon/2$ so long as $\mu(E) < \delta$. Hence $\{f_n\}_{n \in \mathbb{N}}$ is uniformly integrable (In fact $\{f\} \cup \{f_n\}_{n \in \mathbb{N}}$ is uniformly integrable).

Folland 3.12. Let $E = A \times B$. Since ν_j, μ_j are σ -finite, and $(\nu_1 \times \nu_2) \ll (\mu_1 \times \mu_2), \nu_j \ll \mu_j$, we have that all relevant Radon-Nikodym densities exist. Now by properties of the density and Fubini-Tonelli:

$$(\nu_1 \times \nu_2)(E) = \int_E d(\nu_1 \times \nu_2) = \int_A \left(\int_B d\nu_2 \right) d\nu_1 = \int_A \frac{d\nu_1}{d\mu_1} \left(\int_B \frac{d\nu_2}{d\mu_2} d\mu_2 \right) d\mu_1 = \int_A \left(\int_B \frac{d\nu_1}{d\mu_1} \frac{d\nu_2}{d\mu_2} d\mu_2 \right) d\mu_1.$$

One last appeal to Fubini-Tonelli yields

$$(\nu_1 \times \nu_2)(E) = \int_E \frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1} \frac{\mathrm{d}\nu_2}{\mathrm{d}\mu_2} \,\mathrm{d}(\mu_1 \times \mu_2),$$

and we conclude by uniqueness.

Folland 3.13.

- (a) Let X=[0,1] equipped with the Borel σ -algebra. Let m be the Lebesgue measure and μ the counting measure. If $\mu(A)=0$, then $A=\emptyset$ and $m(\emptyset)=0$. So $m\ll\mu$. However $\mathrm{d} m\neq f\,\mathrm{d} \mu$ for any f. If $m(E)=\int_E f\,\mathrm{d} \mu$, then $0=m(\{x\})=\int_{\{x\}} f\,\mathrm{d} \mu=f(x)\mu(\{x\})=f(x)$. Namely f(x)=0 for all $x\in X$. But then $1=m(X)=\int_X f\,\mathrm{d} \mu=\int_X 0\,\mathrm{d} \mu=0$, a contradiction.
- (b) By way of contradiction suppose $\mu = \lambda + \rho$ is a Lebesgue decomposition such that $m \perp \lambda$ and $\rho \ll m$. Since $\rho \ll m$, $\rho(\{x\}) = 0$. But then $\lambda(\{x\}) = \mu(\{x\}) \rho(\{x\}) = 1 0 = 1$. Now since $\lambda \perp m$, there is $N \subset [0,1]$ such that N is m-null and N^c is λ -null. But for $x \in N^c$ we have $\{x\} \subset N^c$ and since N^c is λ -null we have $\lambda(\{x\}) = 0$. This contradicts the above unless $N^c = \emptyset$. But if $N^c = \emptyset$, then N = [0,1]. But then clearly N = [0,1] is not m-null since m([0,1]) = 1.

Folland 3.14. Let ν be a signed measure and μ a σ -finite positive measure on (X, \mathcal{M}) . We seek to show that if $\nu \ll \mu$, then there exists an extended μ -integrable $f: X \to [-\infty, \infty]$ such that $d\nu = f d\mu$.

(a) First it suffices to assume that μ is finite and ν is positive. Indeed once we prove the result for this case we can extend to σ -finite μ by writing $X = \bigcup_{j=1}^{\infty} E_j$ as a disjoint union with $\mu(E_j) < \infty$. Write $\mu_j(A) = \mu(E_j \cap A)$, so that $\mu = \sum_{j=1}^{\infty} \mu_j$. Note that each μ_j is a finite measure so there is an extended μ_j -integrable f_j such that $\nu_j(A) = \int_A f_j \, \mathrm{d}\mu_j$. Then take $f = f_j \chi_{E_j}$ and use $\nu = \sum_j \nu_j$. Then we can extend the result to signed ν by finding f^{\pm} such that $\nu^+(A) = \int_A f^+ \, \mathrm{d}\mu$ and $\nu^-(A) = \int_A f^- \, \mathrm{d}\mu$. Finally take $f = f^+ - f^-$ so that

$$\nu(A) = \nu^{+}(A) - \nu^{-}(A) = \int_{A} f^{+} - f^{-} d\mu = \int_{A} f d\mu.$$

(b) Under these assumptions we show that there exists an $E \in \mathcal{M}$ that is σ -finite for ν such that $\mu(E) \geq \mu(F)$ for all F that are σ -finite for ν . Let $\mathcal{S} = \{S \in \mathcal{M} : S \text{ is } \sigma\text{-finite for } \nu\}$. \mathcal{S} is non-empty since it contains \emptyset . Define $M := \sup\{\mu(S) : S \in \mathcal{S}\}$. By definition of supremum, there is a sequence of sets $S_1 \subset S_2 \subset \cdots$ such that $\mu(S_n)$ increases to M. Take $E = \bigcup_{n=1}^{\infty} S_n \in \mathcal{S}$ as a countable union of σ -finite sets. Now by continuity from below $\mu(E) = \lim_{n \to \infty} \mu(S_n) = M$. So the supremum is attained and hence $\mu(E) \geq \mu(F)$ for any $F \in \mathcal{S}$.

(c) Now restrict the measure $\nu_E(A) = \nu(A \cap E)$. By Radon-Nikodym, there exists $g: E \to [0, \infty)$ such that

$$\nu_E(A) = \int_{A \cap E} g \, \mathrm{d}\mu.$$

Moreover, notice that if $F \cap E = \emptyset$, then either $\mu(F) = \nu(F) = 0$ or $\mu(F) > 0$ and $\nu(F) = \infty$. Indeed if $\nu(F) < \infty$, then $F \in \mathcal{S}$ and therefore $\mu(E \cup F) > \mu(E)$ contradicting the maximality of E unless $\mu(F) = 0$. So if $\nu(F) < \infty$, then $\mu(F) = 0$ and $\nu \ll \mu \implies \nu(F) = 0$. On the other hand: $\mu(A) > 0 \implies \nu(A) = \infty$. Define $f: X \to [0, \infty]$ as

$$f(x) = \begin{cases} g(x) & x \in E \\ \infty & x \in E^c \end{cases}.$$

Indeed $\nu(A) = \nu(A \cap E) + \nu(A \cap E^c)$. On $A \cap E$ we have $\nu(A \cap E) = \int_{A \cap E} g \, \mathrm{d}\mu = \int_{A \cap E} f \, \mathrm{d}\mu$. On $A \cap E^c$ either $\mu(A \cap E^c) = 0$ in which case $\int_{A \cap E^c} f \, \mathrm{d}\mu = 0$ and $\nu(A \cap E^c) = 0$ by $\nu \ll \mu$, or $\mu(A \cap E^c) > 0$ in which case $\nu(A \cap E^c) = \infty$ and $\int_{A \cap E^c} f \, \mathrm{d}\mu = \infty$.

Folland 3.15. A measure μ on (X, \mathcal{M}) is called decomposable if there is $\mathcal{F} \subset \mathcal{M}$ with: (i) $\mu(F) < \infty$ for all $F \in \mathcal{F}$; (ii) the members of \mathcal{F} are disjoint and their union is X; (iii) if $\mu(E) < \infty$, then $\mu(E) = \sum_{F \in \mathcal{F}} \mu(E \cap f)$; (iv) if $E \subset X$ and $E \cap F \in \mathcal{M}$ for all $F \in \mathcal{F}$, then $E \in \mathcal{M}$.

- (a) If μ is σ -finite, then by definition there is $\mathcal{F}=\{F_n\}_{n\in\mathbb{N}}$ such that $\bigcup_{n=1}^\infty F_n=X$ is a disjoint union and $\mu(F)<\infty$ satisfying (i) and (ii). Moreover, (iii) and (iv) follow from the other two properties. If $E\subset X$ and $E\cap F_n\in\mathcal{M}$ for all $n\in\mathbb{N}$, then $M\ni\bigcup_{n=1}^\infty(E\cap F_n)=E\cap\bigcup_{n=1}^\infty F_n=E\cap X=E$. And $\mu(E)=\mu(\bigcup_{n=1}^\infty E\cap F_n)=\sum_{n=1}^\infty \mu(E\cap F_n)$.
- (b) Let μ be decomposable, and let $\mathcal{F} \subset \mathcal{M}$ be a decomposition satisfying (i)-(iv). For each $F \in \mathcal{F}$ define the restricted measures $\mu_F(A) = \mu(A \cap F)$ and $\nu_F(A) = \nu(A \cap F)$. By (i) $\mu_F(F) < \infty$ and clearly $\nu_F \ll \mu_F$. Hence 3.14 yields an extended μ_F -integrable function $f_F : F \to [-\infty, \infty]$ such that $\nu_F(A) = \int_A f_F \, \mathrm{d}\mu_F$. Define the function $f : X \to [-\infty, \infty]$ by

$$f(x) = \sum_{f \in \mathcal{F}} f_F(x) \chi_F(x).$$

Now let $E \in \mathcal{M}$ be σ -finite for μ . Write $E = \bigcup_{n=1}^{\infty} E_n$ with $\mu(E_n)$ and assume w.l.o.g. that E_n are disjoint. By (iii)

$$\mu(E_n) = \sum_{F \in \mathcal{F}} \mu(E_n \cap F),$$

so for each n only countably many F satisfy $\mu(E_n \cap F) > 0$. Therefore the collection $\mathcal{F}_E = \{F \in \mathcal{F} : \mu(E \cap F) > 0\}$ is countable (as a countable union of countable sets). Consequently:

$$\int_E f \,\mathrm{d}\mu = \int_E \sum_{F \in \mathcal{F}_E} f_F \chi_F \,\mathrm{d}\mu = \sum_{F \in \mathcal{F}_E} \int_E f_F \chi_F \,\mathrm{d}\mu = \sum_{F \in \mathcal{F}_E} \int_E f_F \,\mathrm{d}\mu_F = \sum_{F \in \mathcal{F}_E} \nu(E \cap F) = \nu(E).$$

Note we can ignore terms where $\mu(E \cap F) = 0$ since $\nu \ll \mu$ and so $\nu(E \cap F) = 0$ anyways.

Folland 3.16. We first show that $d\nu/d\mu = f/(1-f)$. Indeed for $A \in \mathcal{M}$:

$$\int_{A} (1 - f) \, d\lambda + \nu(A) = \int_{A} 1 \, d\lambda - \nu(A) + \nu(A) = \lambda(A) = \mu(A) + \nu(A).$$

So in particular $d\mu/d\lambda = (1-f)$. And since $\mu \ll \lambda$ and $\lambda \ll \mu$ we have $d\lambda/d\mu = 1/(1-f)$. So finally

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \frac{\mathrm{d}\lambda}{\mathrm{d}\mu} = \frac{f}{1-f}.$$

Now we show that $0 \le f < 1$ μ -a.e. Since ν and λ are positive measures, we must have $f \ge 0$ λ -a.e., that is $\lambda(\{x \in X : f(x) < 0\}) = 0$. And since $\mu \ll \lambda$ we have that $f \ge 0$ μ -a.e. also. Now suppose that $f \ge 1$ on some E with $\mu(E) > 0$. Then

$$\nu(E) = \int_{E} f \, \mathrm{d}\lambda = \mu(E) + \nu(E).$$

But this implies that $\mu(E) \leq 0$, a contradiction.

Folland 3.17. Define the measure $\lambda(E)=\int_E f\,\mathrm{d}\mu$ which is finite since $f\in L^1(\mu)$. Define $\rho=\lambda|_{\mathcal N}$. Clearly $\lambda\ll\mu$, and since $\nu=\mu|_{\mathcal N}$ we have that $\rho\ll\nu$. So by Radon-Nikodym there is an extended ν -integrable function g such that $\rho(E)=\int_E g\,\mathrm{d}\nu$ for all $E\in\mathcal N$. Moreover $g\in L^1(\nu)$ since $\rho(X)<\infty$ and g is unique up to equality ν -a.e. by Radon-Nikodym. Since ρ is the restriction of λ we have $\int_E f\,\mathrm{d}\mu=\int_E f\,\mathrm{d}\nu$ for all $E\in\mathcal N$.

Folland 3.18. Let ν be a complex measure and suppose $d\nu = f d\mu$. Recall the definitions

$$L^1(\nu) = L^1(\nu_r) \cap L^1(\nu_i) = \left\{ \text{measurable } f: \int |f| \, \mathrm{d}\nu_{r,i}^\pm < \infty \right\}$$

$$L^1(|\nu|) = \left\{ \text{measurable } f: \int |f| \, \mathrm{d}|\nu| < \infty \right\}, \qquad \text{where } \mathrm{d}|\nu| = |f| \, \mathrm{d}\mu.$$

We first show that $L^1(|\nu|) \subset L^1(\nu)$. If $g \in L^1(|\nu|)$, then

$$\infty > \int |g| \, \mathrm{d}|\nu| = \int |g||f| \, \mathrm{d}\mu \ge \left| \int |g|f \, \mathrm{d}\mu \right| \ge \int |g| \, \mathrm{d}\nu.$$

Now we show that $L^1(\nu) \subset L^1(|\nu|)$. If $g \in L^1(\nu)$, then

$$\int |g| \, \mathrm{d} \nu_r^{\pm} < \infty$$
 and $\int |g| \, \mathrm{d} \nu_i^{\pm} < \infty$.

Moreover we have that $|f| \leq |\operatorname{Re} f| + |\operatorname{Im} f| = (\operatorname{Re} f)^+ + (\operatorname{Re} f)^- + (\operatorname{Im} f)^+ + (\operatorname{Im} f)^-$. Hence

$$\int |f||g| \, \mathrm{d}\mu \le \int |g| (\mathrm{Re}f)^+ \, \mathrm{d}\mu + \int |g| (\mathrm{Re}f)^- \, \mathrm{d}\mu + \int |g| (\mathrm{Im}f)^+ \, \mathrm{d}\mu + \int |g| (\mathrm{Im}f)^- \, \mathrm{d}\mu.$$

These terms are all $\int |g| d\nu_{i,r}^{\pm}$ which are finite so:

$$\int |g| \, \mathrm{d} |\nu| = \int |g| |f| \, \mathrm{d} \mu < \infty.$$

Finally we write

$$\left| \int g \, \mathrm{d} \nu \right| = \left| \int g f \, \mathrm{d} \mu \right| \le \int |g| |f| \, \mathrm{d} \mu = \int |g| \, \mathrm{d} |\nu|.$$